
(Some) Theory perspective on correlations

and fluctuations in small systems

Denes Molnar, Purdue University

RHIC AGS Users Meeting

June 7-10, 2016, Brookhaven National Laboratory

– Typeset by FoilTEX – D. Molnar @ RHIC AGS Users Mtg, Jun 7-10, 2016 1



Why small systems?

p+p and p(d,..)+A:

used to be baselines for studying novel A+A physics ideas

→ now became testing grounds for how far A+A models apply

heavy ion theory:

- calculations for various theoretical limits, applicability not clear a priori

e.g., hydrodynamics, kinetic theory, classical field theory

- doesn’t get simpler for p+A (in most cases)

still many degrees of freedom, and larger fluctuations

small systems mean a new knob to vary (esp. geometry) → extra constraints
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Hydrodynamics
Long-wavelength, long-timescale limit, (in general∗) near local equilibrium.

Conservation laws: ∂µT
µν(x) = 0, ∂µN

µ
c (x) = 0 (c = B,S,Q, ...)

+ equation of state p(e, {nc}), T (e, {nc})
+ transport coefficients η(T ), ζ(T ), κ(T ), Dc,b(T ), ...

+ for 2nd-order theories: relaxation times τη(T ), τζ(T ), τκ(T ), ...

that enter in dynamical eqns for shear stress, bulk pressure, heat flow...

∗ isotropized conformal systems can have e = 3p out of equilibrium

In heavy-ion physics applications also need:

- initial conditions

- stopping condition (typically a T = const hypersurface)

- model for converting hydro fields to particles (usually Cooper-Frye)

- optional: late stage hadron kinetic theory (“hybrid” hydro+transport)

Only combinations of all these can be tested against data.
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SIGNS OF COLLECTIVITY IN SMALL SYSTEMS

1. Elliptic and triangular flow

2. Flow from higher cumulants

all particles flow

3. Hierarchy of v2 and v3 in p-A, d-A, He-A

collective response to geometry (final state effect)

4. k⊥ dependence of HBT radii

5. Factorization at intermediate p⊥ and large ∆η

particles at intermediate p⊥, large η, correlated to geometry

6. Mass splitting of v2

7. Mass hierarchy of spectra (< p⊥ >)

◮ Density driven collective expansion

◮ Hydrodynamics describes data for p⊥ < 1.5GeV

Piotr Bożek Hydrodynamics

Bozek @ QM2015

vn(pT , ...) = 〈cosn(φ− ψn)〉pT ,..., n=2, 3

vn{2} > vn{4} ≈ vn{6} ≈ vn{8}

Vn∆(a, b) ≈
√

Vn∆(a, a)Vn∆(b, b)

≈ boosted nearly thermal sources
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Bozek & Broniowski, PRC88 (’13): shear & bulk viscous hydro, GLISSANDO initconds
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CMS, PRL115 (’15): multiparticle azimuthal correlations in pPb
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PHENIX, PRL (’15):
3He+Au
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rather different models do reasonably well up to pT = 1− 1.5 GeV

– Typeset by FoilTEX – D. Molnar @ RHIC AGS Users Mtg, Jun 7-10, 2016 7



Where is the energy loss??
On high-pT physics in small systems, see Chanwook Park’s talk this afternoon...

If medium is indeed hydrodynamic (opaque), should there be jet energy loss?

central Pb+Pb vs p+Pb

dNh

dη
∼ 2400 ∝ 30× p+Pb ∼ 80

RMS radius ∼ 3 fm ∝ 3× p+Pb ∼ 1 fm

“density” ∼ 〈s〉 ∼ dNh

dη

1

R2
∝ 3× p+Pb

opacity ∼< s > ·R ∝ 10× p+Pb

but this ignores density fluctuations, which are larger in the smaller system
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e.g., GLV energy loss for 3.4% most central p+Pb at
√
sNN = 5.02 TeV

- medium: 2+1D ideal hydro with fluctuating GLISSANDO initconds

- covariant E-loss, with (1− ~vF~vjet) jet-flow coupling DM & Sun, NPA932 (’14)

DM & Sun @ QM2015:

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10  20  30  40  50  60  70  80  90  100

R
pA

pT [GeV]

pion

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 5  10  15  20  25  30  35  40  45  50

pi
on

  v
n

pT [GeV]

v2, 50 events
v4, 50 events
v3, 50 events

expect ballpark ∼ 5% suppression and ∼ 1% v2 for pions, on average
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Initial conditions matter
common theme: density/shape fluctuations
due to random nucleon positions in nucleus

Alver & Roland, PRC81 (’10)
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MC-Glauber, GLISSANDO: postulate transverse profile based on number of
wounded nucleons/binary collisions

AMPT: color flux tubes based on random nucleon position, dissolved later
to quarks (“string melting”)

EPOS: based on “pomerons” produced in initial parton scatterings

MC-KLN, MCrcBK: gluon saturation in low-x limit of QCD with Q2
s(0) ∼ Npart

from nucleons and kT factorization

IP-Glasma: classical Yang-Mills evolution for low-x gluons with random color
sources based on nucleon positions 〈ρa(xT )ρb(yT )〉 ∼ Q2

s(xT )δ
abδ2(xT − yT )

Trento: phenomenological model that interpolates between Glauber and
saturation profiles
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Different initial states: very different results
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see also: Kozlov, Luzum, Denicol, Jeon, Gale, arXiv:1405.3976 
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Small systemsSchenke @ QM2015

– Typeset by FoilTEX – D. Molnar @ RHIC AGS Users Mtg, Jun 7-10, 2016 11



one idea: proton shape from low-x evolution (JIMWLK), with 3 constituent
quark seeds at high x Schlichtig & Schenke, PLB739 (’14)

→ “fatter” and anisotropic transverse profile, for single proton

interesting if such sub-fermi structures matter in hydro, a supposedly long-
wavelength theory
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Kinetic theory
Incoherent, particle limit of QCD (not very soft momenta).

(typically on-shell) phase-space density f(x, ~p) ≡ dN(~x,~p,t)
d3xd3p

transport equation:

pµ∂µfi(x, p) = Ci
2→2[{fj}](x, p) + Ci

2↔3[{fj}](x, p) + · · ·

with, e.g.,

C
i
2→2 =

1

2

∑

jkl

∫

234

(f
k
3 f

l
4 − f

i
1f

j
2)W

ij→kl
12→34







∫

j

≡

∫

d3pj

2Ej

, f
k
a ≡ f

k
(x, pa)







collision terms can be obtained from perturbative QCD matrix elements

fully causal and stable, thermalizes (in box)
→ ggg ↔ gg has a very important role in thermalization Greiner & Xu, PRC71 (’05)

near hydro limit, transport coeffs & relaxation times: η ≈ 1.2T/σ, τπ ≈ 1.2λtr
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one full-fledged example: A Multi-Phase Transport (AMPT)

Lin, Ko et al, PRC72 (’05)

also quite successful with observables

AMPT ≈ Lund string model (HIJING) → geometry fluctuations
+ 2 → 2 parton cascade (ZPC)
+ hadron transport (ART)

version with “string melting”:

• strings converted to quarks/antiquarks

• hadronization via coalescence

→ higher parton density, enhanced collectivity

HERE: especially d+Au, p+Pb
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Anisotropic escape - AMPT 6=hydro

• high opacity limit of transport is indeed hydro (can be hard to reach)

DM & Huovinen, PRL94 (’05) Bzdak & Ma, PRL 113 (’14): 3 mb
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• but at more modest opacities 〈Ncoll〉 ∼ 5

→ finite, anisotropic chance to escape collision zone

He et al, PLB 753 (’16)
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AMPT = string melting + parton cascade + coalescence + hadron cascade

In AMPT, still interacting part of system carries surprisingly small vn

He et al, PLB753 (’16):
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This is due to the low opacities in AMPT, and also holds for d+Au.

He et al, PLB753 (’16): Au+Au, 〈Ncoll〉 = 4.5 central d+Au, 〈Ncoll〉 = 1.2

→ large O(1) change in v2 near the very last collision

→ effect does not come in the microscopic collision itself because it survives
randomization of outgoing azimuths in each collision

– Typeset by FoilTEX – D. Molnar @ RHIC AGS Users Mtg, Jun 7-10, 2016 17



• anisotropic escape is generic, and also manifest vs time (instead of Ncoll)

e.g., MPC transport code, with smooth Au+Au profile, isotropic 2 → 2

DM (’15): AMPT v2(τ ) MPC v2(τ )
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The mass effect in vn(pT ) also comes out, due to coalescence and hadronic
rescatterings. (Rescatterings mattered already in RQMD Teaney et al, nucl-th/0110037)

Li et al, 1604.07387v2: Au+Au d+Au p+Pb
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Coalescence is also how AMPT gets large hadronic vn with small σ. But
rescaling v2/nq vs pT/nq does not give you the parton flow Chen & Ko, PRC73 (’06)
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Flow without hydro(?)
observation of flow may not inevitably mean hydrodynamics

Romatschke, EPJC75 (’15): significant flow from “free streaming”

v2 in p+Pb v3 in p+Pb
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how come vn is nonzero for free streaming?
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“free streaming” = free streaming + sudden momentum rearrangement on a
spacetime hypersurface

• for any transport solution f(x, t), can construct Tµν(x) =
∫

d3p
E pµpνf

and find energy & momentum conserved: ∂µT
µν(x) = 0

• also can define T = const Cooper-Frye hypersurfaces, and get particles:

E
dN

d3p
= pµdσ

µ(x)f(x, ~p)

• but guessing the correct f from hydro fields is nontrivial (f = feq + δf)

ALL hydro simulations face this ’δf problem’ when comparing to data

unless the system is quickly driven towards a fixed point, such as local
thermal equilibrium, the answer depends on the evolution history

δf still depends on the microscopic dynamics even near equilibrium
DM & Wolff, 1405:7850; Teaney, Moore, Dusling, PRC81 (’10); El et al, EPJA48 (’12) ...
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self-consistently determined viscous δf corrections are smaller for species that
interact more frequently (closer to equilibrium), and tend to have weaker
δf/feq ∼ p∼1.5 dependence than the commonly used quadratic (Grad) form

Dusling et al, PRC81 (’10): quark/gluon v2(pT ) DM & Wolff, JPCS 535 (’14): π/p v4(pT )
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matters a lot for identified particle v6(pT ) as well
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vn from wave physics
hydro used at sub-fermi wavelengths - should we worry about quantum
mechanics/wave effects?

Back of the envelope: QM + uncertainty relation (h̄ = 1)

v2 ∼
〈p2x − p2y〉
〈p2x + p2y〉

, 〈p2x〉 ∼ 1

R2
x

, 〈p2y〉 ∼ 1

R2
y

⇒ v2 ∼
R2

y −R2
x

R2
y +R2

x

= ε (!)

At finite T , excited states also constribute. In classical stat phys (H = K+V ):

dN

dp
= N

∫

dr e−H1(p,r)/T

∫

dr dp e−H1(p,r)/T
= N

e−K(p)/T

∫

dp e−K(p)/T
= isotropic ⇒ vn ≡ 0

But in QM, level spacing matters
∫

d3re−H/T → ∑

n
|ψn(p)|2e−En/T , and for

Gaussian potential DM, Wang & Greene, 1404.4119

v2 ≈
h̄2

12kBTM〈R2
x〉

· ε

1 + ε
=

h̄2

12p2th〈R2
x〉

· ε

1 + ε
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– Typeset by FoilTEX – D. Molnar @ RHIC AGS Users Mtg, Jun 7-10, 2016 23



anisotropy vanishes for “hot” systems v2 ∼ 1/T
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but expect on the order of 1% v2 in small systems (p+A)

in comparision, for cold atomic gases v2 ∼ O(10−5) [6Li, ∼ µK, rx ∼ 20 µm]

Main question: how to combine this with dynamics?
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This is just a simple wave effect, so classical Yang-Mills may show it too.

Interestingly, v2n 6= 0, but there is no hydrodynamic flow anywhere:

L =
ih̄

2

(

ψ∗ψ̇ − ψ̇∗ψ
)

− h̄2

2M
(∇ψ∗)(∇ψ)− V (r, t)ψ∗ψ

so from Noether’s theorem

T 00 =
h̄2

2M
(∇ψ∗)(∇ψ) + V (r, t)ψ∗ψ (1)

T 0i =
ih̄

2
(ψ∇iψ

∗ − ψ∗∇iψ) (2)

T i0 =
ih̄

2M

(

h̄2

2M
∆ψ − V ψ

)

(∇iψ
∗) + c.c. (3)

T ij =
h̄2

2M

{

(∇iψ
∗)(∇jψ)−

1

2
δij [ψ

∗∆ψ + (∇ψ∗)(∇ψ)]
}

+ c.c. (4)

The HO wave functions are real ⇒ T 0i ≡ 0 ≡ T i0
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Correlated multi-particle 

production

• Color electric fields inside the 

projectile and target fluctuate from 

event-to-event and are locally 

organized in domains of size ~1/Qs

Intuitive picture:

• Each parton receives a kick in the 

direction of the chromo-electric field 

which leads to a correlation in 

azimuthal angle 

(Kovner,Lublinsky PRD 83 (2011) 034017;  Dumitru, Giannini NPA 933 (2014) 212-228; 
 Dumitru, Skokov PRD 91 (2015) 7, 074006; Lappi, Schenke, Schlichting, Venugopalan 1509.03499)

6

(c.f. talk by T. Lappi)

Schlichting @ QM2015

→ breaks axial symmetry E-by-E

can get vn 6= 0 already from initial state
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Schnenke, Schlichting, Venugopalan, PLB747 (’15)

gluon v2(pT ) in p+Pb v3(pT )
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- large initial v2 > 0, not from collective flow (T 0i ∝ ~Ea × ~Ba = 0)

- classical Yang-Mills evolution also builds up v3 > 0 for t > 0
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Validity of second-order hydro
Hydrodynamics is an expansion around equilibrium in small gradients
compared to microscopic scales. How large are gradients in practice?

Denicol & Niemi, 1404.7327: trouble with shear in p+Pb, even from smooth initconds

Two large Knudsen numbers: Knθ = τπ(∂µu
µ) > 1 and Knǫ = τπ|∂µǫ|/ǫ > 1

→ need to check higher orders in hydro?
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Smallest droplets from AdS/CFT

• lots of insight from N = 4 SYM using gauge-gravity duality

e.g., the “minimal” shear viscosity η/s = 1/4π Policastro, Son, Starinets, PRL87 (’02)

Kovtun, Son, Starinets, PRL94 (’05)

main advantage: - solvable at strong coupling (Einstein equations in 5D)
- QCD-like (but no confinement, conformal)

• can be used to test applicability of hydrodynamics

e.g., Casalderrey-Solana et al, 1101.0618; ... Chesler, PRL 115 (’15)

or even generate initconds for hydro: (super)SONIC van der Schnee et al, PRL111 (’13)

one recent work: collide two Gaussian droplets to test hydro in p+p

Chesler, JHEP03 (’16)
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Chesler, JHEP03 (’16)

T 00
ini ∝ N2

cµ
3e

−
(xT±b/2)2

2σ2 δw(z±t)
ETOT ∝ N2

cµ
3σ2

with σ = 3/µ,

and b = 0 (central),
or b = σ (peripheral)

Teff ∼ (ǫ/N2
c )

1/4
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Chesler, JHEP03 (’16): pressure evolution at center x = y = z = 0
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t

first term in gradient expansion Tµν = Tµν
ideal + Tµν

linear grad. + ... good enough

for t >∼ 1.2/µ

despite O(1) relative correction to ideal isotropic pressure (pT/pL > 10(!))
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maximum future error in Tµν(~x, t), relative to pressure, if we only keep
first-order term in gradient expansion. Good: < 20%, bad: > 80%
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x−z plane x−y plane

∆(t) ≡ max
t′>t

T µν(t′) − T µν
hydro(t

′)

p(t′)

viscous hydro stays valid near
center: R <∼ 1/Teff

even though gradients and
the pressure anisotropy
remain large

if true for QCD, hydro for
(smooth) small systems may
not be unreasonable
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Conclusions
Small system collisions are very interesting, and many theoretical
developments are in progress. Most intriguing possibility (to me): quark-
gluon plasma in p+A or perhaps even p+p.

One lesson is that “flow observables” do not necessarily have a (solely)
hydrodynamic origin. Anisotropic escape, initial production from the
glasma/classical Yang-Mills, or even wave packet spatial anisotropy can
play a role.

Applicability of hydrodynamics may be questionable (too large gradients in
p+A) but an encouraging AdS/CFT work suggests that even p+p might be
accommodated by 2nd-order viscous hydro.

There is quite some more work to be done on the theory side especially.
Relentlessly keeping models’ feet to the fire should help sort things out.
High-order identified particle vn up to pT ∼ 3− 4 GeV would be welcome.

—

I left out many exciting areas, e.g.: dynamical fluctuations in hydro,
longitudinal fluctuations, rigorous parameter extraction from data, ultra-
central A+A collisions, thermalization, anisotropic hydro ...
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v2 vs Ncoll from MPC in Au+Au at RHIC

He et al, PLB753 (’16):
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Quark number scaling from AMPT - v2 for φ, Ω, and s-quarks

Chen & Ko, PRC73 (’06):
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Cooper-Frye freezeout

Not a very satisfactory solution (still open problem)

Assume sudden transition to a gas on a 3D hypersurface (typically T = const

or ε = const)

E dN = pµdσµ(x) d
3p fgas(x, ~p)

(covariant analog of t = const
freezeout dN/d3xd3p = f(~x, ~p, tfo))

Good: - conserves energy-momentum and charges locally

Bad: - negative contributions possible p · dσ < 0
- arbitrariness in choice of HS & self-consistency problem
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v2 from QM DM, Wang & Greene, 1404.4119

Au+Au at RHIC:
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with notable caveats (nonrelativistic treatment, no expansion dynamics)
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